Chenopodiaceae

Primary tabs

Chenopodiaceae

Chenopodiaceae Vent., Tabl. Regn. Veg. 2: 253. 1799, nom. cons., sec. Hernández-Ledesma & al. 20151
  • 1. Hernández-Ledesma, P., Berendsohn, W. G., Borsch, T., von Mering, S., Akhani, H., Arias, S., Castañeda-Noa, I., Eggli, U., Eriksson, R., Flores-Olvera, H., Fuentes-Bazán, S., Kadereit, G., Klak, C., Korotkova, N., Nyffeler, R., Ocampo, G. & Ochoterena, H. 2015: A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. – Willdenowia 45(3): 281-383. http://doi.org/10.3372/wi.45.45301

Introduction

The family Chenopodiaceae is cosmopolitan predominantly occurring in temperate and subtropical regions, and especially in semi-arid or arid environments (Kühn 1993; Kadereit & al. 2003). Our delimitation of the Chenopodiaceae follows the concept of Ulbrich (1934), and Kühn (1993) with the exception of the Polycnemoideae (see Amaranthaceae). Considering that the core of Chenopodiaceae (composed of Betoideae, Chenopodioideae, Camphorosmoideae, Salicornioideae, Salsoloideae and Suaedoideae) is likely to be monophyletic, we maintain the Chenopodiaceae as a family distinct from the Amaranthaceae in line with a series of current taxonomic treatments and morphological, physiological and phylogenetic studies (Tzvelev (ed.) & al. 1996; Welsh & al. 2003; Zhu & al. 2003; Kadereit & al. 2005; Kapralov & al. 2006; Voznesenskaya & al. 2007; Akhani & al. 2007; Zacharias & Baldwin 2010; Kadereit & al. 2010; Sukhorukov 2010; Flores-Olvera & al. 2011; Sukhorukov & Kushunina 2014). We believe that name stability is important as it facilitates the assignment of genera to the respective major Amaranthaceae and Chenopodiaceae clades in line with the vast literature on Chenopodiaceae.
The monophyletic core Chenopodiaceae had already been found with maximum support based on matK-trnK sequence data (Müller & Borsch 2005), although relationships of the six major subfamilies were not clear. Much progress has been made in the last decade on the internal relationships of Chenopodiaceae. Schütze & al. (2003) found two major clades of Suaedoideae Ulbr. to which Bienertia is sister. The Salicornioideae were clearly identified as monophyletic and are a lineage of about 90 species growing worldwide in coastal and inland saline habitats (Kadereit & al. 2006) with often succulent-articulated stems. Phylogenetic analysis yielded good support for the Camphorosmoideae that include several major lineages of mostly steppe, semi-desert and desert plants (Kadereit & Freitag 2011) but genera of the Salsoloideae such as Salsola L. were depicted as largely polyphyletic (Akhani & al. 2007; Kadereit & Freitag 2011). The Chenopodioideae were confirmed as monophyletic, although the members of the genus Chenopodium in its pre-phylogenetic circumscription appeared scattered across the subfamily, leading to a re-circumscription at genus and tribal level (Fuentes-Bazán & al. 2012).A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U

Bibliography

A. Akhani, H., Edwards, G. E. & Roalson, E. H. 2007: Diversification of the old world Salsoleae s.l. (Chenopodiaceae): Molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification. – International Journal of Plant Sciences 168(6): 931-956. http://doi.org/10.1086/518263
B. Flores-Olvera, H., Vrijdaghs, A., Ochoterena, H. & Smets, E. 2011: The need to re-investigate the nature of homoplastic characters: an ontogenetic case study of the ‘bracteoles’ in Atripliceae (Chenopodiaceae). – Annals of Botany, n.s, 108: 847 – 865. http://doi.org/10.1093/aob/mcr203
C. Fuentes-Bazán, S., Mansion, G. & Borsch, T. 2012: Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). – Molecular Phylogenetics and Evolution 62(1): 359-374. http://doi.org/10.1016/j.ympev.2011.10.006
D. Hernández-Ledesma, P., Berendsohn, W. G., Borsch, T., von Mering, S., Akhani, H., Arias, S., Castañeda-Noa, I., Eggli, U., Eriksson, R., Flores-Olvera, H., Fuentes-Bazán, S., Kadereit, G., Klak, C., Korotkova, N., Nyffeler, R., Ocampo, G. & Ochoterena, H. 2015: A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. – Willdenowia 45(3): 281-383. http://doi.org/10.3372/wi.45.45301
E. Kadereit, G. & Freitag, H. E. 2011: Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): Implications for biogeography, evolution of C4-photosynthesis and taxonomy. – Taxon 60(1): 51-78. http://doi.org/10.1002/tax.601006
F. Kadereit, G., Borsch, T., Weising, K. & Freitag, H. E. 2003: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. – International Journal of Plant Sciences 164: 959–986. http://doi.org/10.1086/378649
G. Kadereit, G., Gotzek, D., Jacobs, S. & Freitag, H. E. 2005: Origin and age of Australian Chenopodiaceae. – Organisms Diversity Evol. 5: 59 – 80
H. Kadereit, G., Mavrodiev, E. V., Zacharias, E. H. & Sukhorukov, A. P. 2010: Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. – American Journal of Botany 97(10): 1664-1687. http://doi.org/10.3732/ajb.1000169
I. Kadereit, G., Mucina, L. & Kadereit, J. W. 2006: Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. – Taxon 55: 617-642
J. Kapralov, M. V., Akhani, H., Voznesenskaya, E. V., Edwards, G., Franceschi, V. & Roalson, E. H. 2006: Phylogenetic relationships in the Salicornioideae / Suaedoideae / Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. – Systematic Botany 31(3): 571-585. http://doi.org/10.1600/036364406778388674
K. Kühn, U. & al. 1993: Chenopodiaceae, 253 – 280. – In: Kubitzki, K., Rohwer, J.G. & Bittrich, V. (ed.), The Families and Genera of Vascular Plants 2. – Berlin, Heidelberg & New York: Springer
L. Müller, K. F. & Borsch, T. 2005: Phylogenetics of Amaranthaceae based on matK/trnK sequence data – Evidence from parsimony, likelihood, and bayesian analyses. – Annals of the Missouri Botanical Garden 92: 66 – 102
M. Schütze, P., Freitag, H. & Weising, K. 2003: An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). – Plant Systematics and Evolution 239(3-4): 257-286. http://doi.org/10.1007/s00606-003-0013-2
N. Sukhorukov, A. P. & Kushunina, M. 2014: Taxonomic revision of Chenopodiaceae in Nepal. – Phytotaxa 191(1): 10–44. http://doi.org/10.11646/phytotaxa.191.1.2
O. Sukhorukov, A.P. 2010: Atriplex nilotica Sukhor. (sect. Teutliopsis, Chenopodiaceae) – eine neue Art für die ägyptische Flora. – Feddes Repertorium 121(1-2): 32-37. http://doi.org/10.1002/fedr.201011126
P. Tzvelev, N. N. 1996: Flora Europae orientalis / Флора восточной Европы 9. – St. Petersburg: Acad. Sci. Rossicae, Inst. Bot. Nomine V. L. Komarov
Q. Ulbrich, O. E. 1934: Chenopodiaceae, pp. 379-584. – In: Engler, H.G.A. & Prantl, K. A. E., Die natürlichen Pflanzenfamilien, ed. 2, 16c
R. Voznesenskaya, E. V., Chuong, S. D. X., Koteyeva, N. K., Franceschi, V. R., Freitag, H. & Edwards, G. E. 2007: Structural, biochemical, and physiological characterization of C4 photosynthesis in species having two vastly different types of Kranz anatomy in genus Suaeda (Chenopodiaceae). – Plant Biology 9(6): 745-757. http://doi.org/10.1055/s-2007-965579
S. Welsh, S. L., Crompton, C. W. & Clemants, S. E. 2003: Chenopodiaceae, pp. 258–404. – In: Flora of North America Editorial Committee, Flora of North America north of Mexico 4. – New York: Oxford University Press
T. Zacharias, E. H. & Baldwin, B. G. 2010: A molecular phylogeny of North American Atripliceae (Chenopodiaceae), with implications for floral and photosynthetic pathway evolution. – Systematic Botany 35(4): 839-857
U. Zhu, G., Mosyakin, S. L. & Clemants, S. E. 2003: Chenopodiaceae, p. 380. – In: Flora of China 5. – Beijing: Science Press; St. Louis: Missouri Botanical Garden Press